

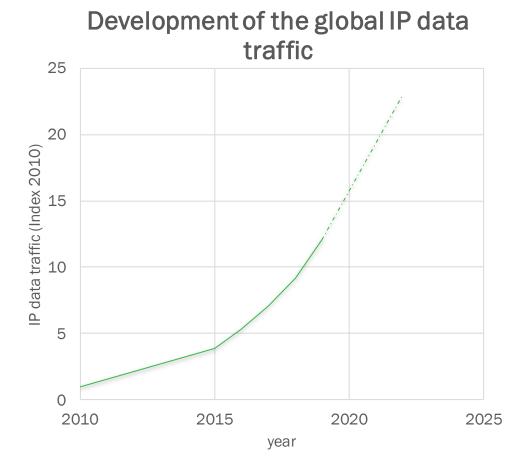
Umweltauswirkungen vernetzter digitaler Systeme: Wie lässt sich der CO₂-Fußabdruck von Data Traffic berechnen?

DIV 2023 - Speaker: Dr. Constantin Herrmann - Director Sustainability Consulting @ Sphera Solutions GmbH

Sphera is a leading global provider of Environmental, Social and Governance (ESG) performance and risk management software, data and consulting services with a focus on Environment, Health, Safety & Sustainability (EHS&S), Operational Risk Management and Product Stewardship.

Sustainability

Our Mission


To create a safer, more sustainable & productive world.

Background CO₂-Footprint / LCA of Data Traffic **Exemplary Results**

The Rise of IP Data Traffic

Main drivers:

More people with internet access

More devices

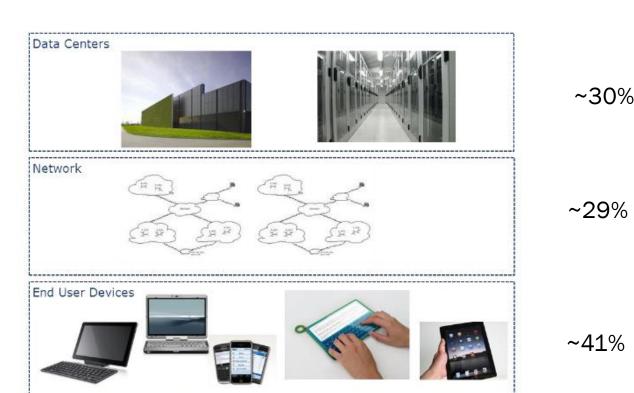
New product concepts

 (i.e., smart home applications)

Remote work

Environmental Impacts of Information and Communications Technology (ICT)

2-3% on the global carbon footprint



Energy demand of e.g., data centers has stabilized

Future: Green by IT?

High level structure of ICT

Sphera

% on ICT

emissions

2020

Future Development of the CF

Chances:

- Server virtualizations,
- Moore's law (just for now?)
- Data center cooling technologies
- Al in energy management
- Larger data centers
- "From plasma TV to smartphones"

Challenges:

- Heat up microprocessors
- Smart devices
- Number of devices
- Increased workload (!)

A		Assumptions about demand for ICT			
		increases less than or in line with efficiency	increases more than efficiency		
Assumptions about efficiency	continues	'Efficiency saves ICT' Emissions decline or stabilise e.g. Malmodin, Masanet	'Jevons Paradox' Emissions increase e.g. Hilty, Galvin, Magee		
	stops	'Jevons stalled' Emissions stabilise	'Growth without efficiency' Emissions increase rapidly e.g. Andrae, Belkhir		

Who is right?

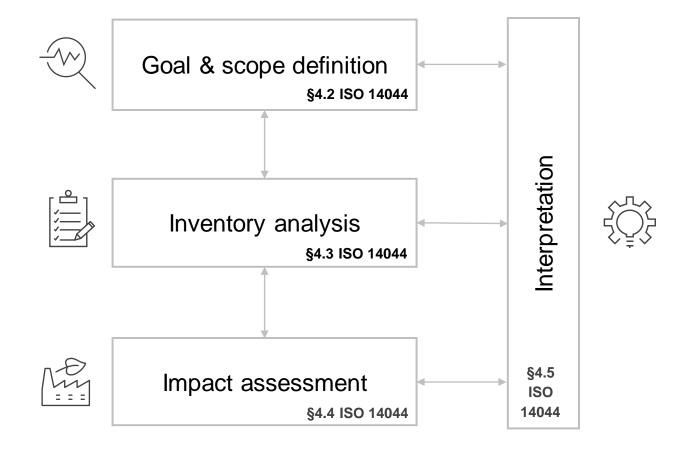
Background CO₂-Footprint / LCA of Data Traffic **Exemplary Results**

Standards & Guidance for Organizations

- ICT Sector Guidance built on the GHG protocol (2017)
 - Developed by GeSi & carbon trust
 - Defines general principles (relevance, completeness, consistency, transparency, accuracy)
 - Requirements for functional units (basis of a calculation)
 - Examples of functional units and system boundaries

- ITU-T L.1410 (2014)
 - Great similarities to ICT sector guidance of the GHG protocol

Product or Service	Functional unit description (examples)					
(examples)	Magnitude	Duration	Quality			
Phone call using a telecommunications network	A minute of voice call over a single carrier's network	One minute phone call	 Listening – e.g., narrow / wideband Mean Opinion Score (MOS) limits Conversational – e.g., echo / latency limits Transmission – ITU E-model rating limit 			
Data transfer using a telecommunications network	 Transfer of 1 megabyte of data Packet-switched data over a single carrier's network 	Extent of time necessary to transfer 1 megabyte of data	 Physical layer net bit rate 10 megabits per second (Mbps) Includes data link and higher layer overhead 			
Desktop Managed Service	• 5,000 users (with geographical and service breakdown)	Five year contract	Service level agreement (SLA), specifying support response times and geographical locations			



Both standards help define the starting points of an environmental analysis, but they do not provide information on <u>how to calculate impacts</u>.

Life Cycle Assessment According to ISO 14040 and 14044

Following the standard ensures clear scope, functional unit and thus reliable results, ready for evaluation or comparison

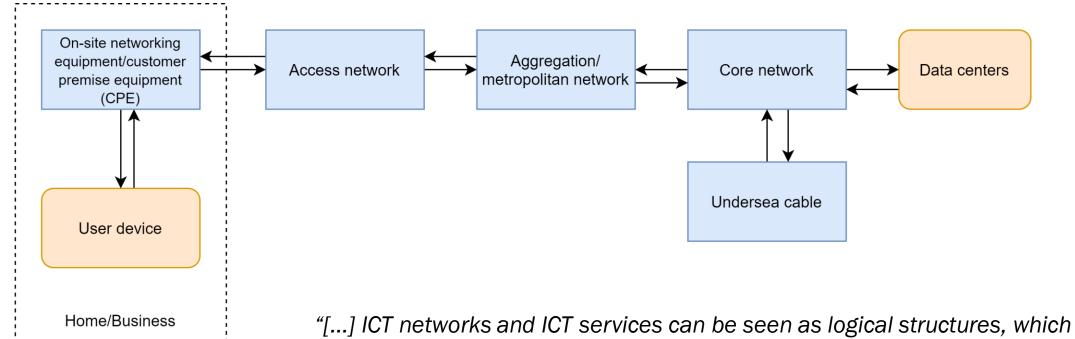
Existing Approaches

Several studies focus on the resource intensity of the Internet and use different approaches, methods and system boundaries

Approaches: Top-down, bottom-up or mixed

Methods: Experiments, annual energy stats, models, etc.

System boundaries: E.g., inclusion of data centers


		Approach	System boundaries			Energy intensity
Reference year	Study		User device	Data transmission	Data center	(kWh/GB)
2014	(Coroama et al. 2015)	Bottom-up		Х		_
2015	(Malmodin and Lundén 2018)	Mixed	Х	х	Х	0.88
2015	(Andrae 2019)	Top-down		х	Х	0.11
2015	(Malmodin and Lundén 2016)	Mixed	Х	х	Х	_
2016	(Pärssinen et al. 2018)	Mixed	Х	х	х	0.92
2020	(Andrae 2020)	Top-down		х	х	0.265
2020	(Ficher et al. 2021)	Bottom-up		х		0.002-0.007

The existing approaches

- ... mainly focus on energy consumption exclusively
- ... do not provide enough insights to understand the results
- ... can not applied on specific applications directly

The Internet – Network of the Networks

are physically made up of ICT goods, including hardware and software [...]." - ITU-T L.1410

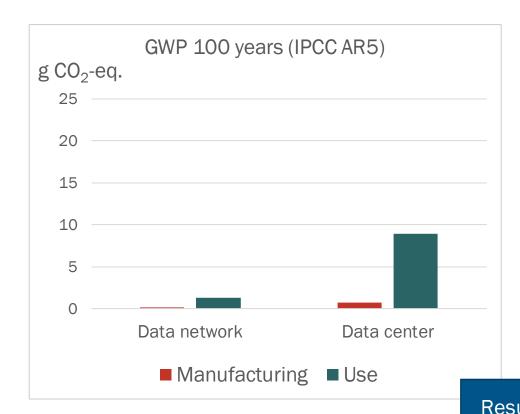
sphera 11 © 2023 Sphera

Sphera's Solution

- We provide a holistic mixed-method (mainly bottom-up) approach to quantify the impacts of internet services
 - Bottom-up necessary to gain insights and model infrastructure
 - Combines knowledge of the scientific community (meta-model)

Inputs necessary to create specific analyses

- Definition of functional unit (applications incl. reference unit e.g., GB)
- Access technologies in use
- Server & client location
- Definition of user devices
- Data center information (PUE, etc.)
- Number of passed network nodes
- Av. bandwidth (depending on the use case

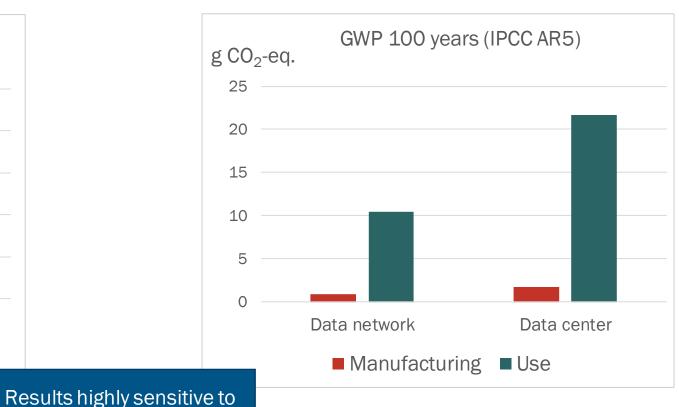


Background
CO₂-Footprint / LCA of Data Traffic
Exemplary Results

Exemplary Application

Downloading a file with a size of 1 GB

Assumptions: VDSL, av. downstream rate 47.7 Mbps

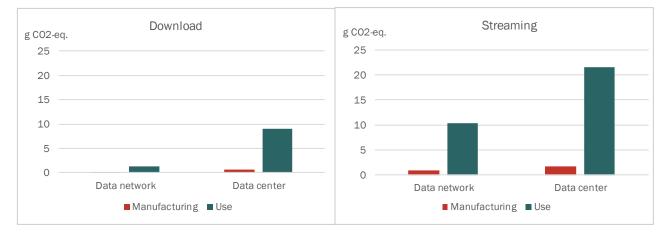


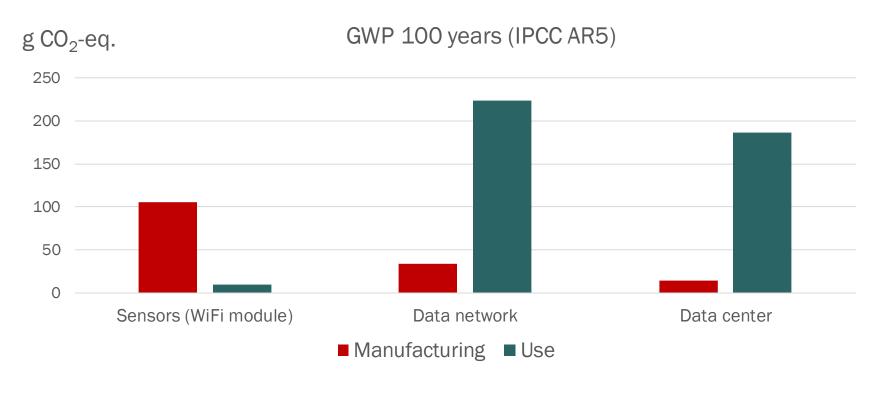
Total: $11g CO_2$ -eq.

input information and use cases

Streaming a video for 1 hour on 1080p

Assumptions: VDSL, streaming intensity 2.35 GB/hr




Total: $35g CO_2$ -eq.

Exemplary Application

Sensor-based communication system for 1 hr

Assumptions: 25 acoustic sensors, GPON, 50% processed locally, 40.5 GB/hr

Total: 573g CO_2 -eq.

Conclusions

Carbon Footprint of digitalisation; Data Traffic as functional unit in product system

- 1 Don't forget the hardware
- 2 Life Cycle Assessment as tool for data-driven decisions
- Define your use case & scope before you assess and conclude

Copyright

All the strategies, models, concepts, ideas, calculations and conclusions incorporated into this documentation are, except explicitly stated otherwise, the exclusive intellectual property of Sphera and are protected by copyright.

They have been turned over to the client/user exclusively for his own use for an unspecified time period. The client/user is not authorized to modify this documentation or to publish, reproduce or distribute it in whole or in part outside his own company.

This provision may only be amended or revoked with the express written consent of Sphera AG. Verbal agreements shall not be deemed valid.

© 2023 Sphera – All rights reserved

